Abstract

This paper investigates the influence of the fuselage arm cross-section shape on the aerodynamic and aeroacoustic performance of quadcopter Unmanned Aerial Vehicles in hover state by numerical simulation. The unsteady simulations of the flow field around one generic two-blade rotor and one fuselage arm are conducted by the Reynolds Averaged Navier-Stokes solver with the [Formula: see text] SST turbulence model. The total thrust forces and the sound pressure level spectra of five fuselage arm cross-section shapes with the same cross-section area are simulated and compared. Results show that the fuselage arm with a square cross-section has the highest aerodynamic performances for all the tested speeds of rotation. The fuselage arm with a circular cross-section ranks second in aerodynamic performance. However, it has the best aeroacoustic performance. The other three tested cross-section shapes show less thrust forces and higher sound pressure levels at the blade passing frequencies than the circular cross-section, which are not optimal neither aerodynamically nor aeroacoustically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call