Abstract

This study explores the temperature changes and freeze–thaw cycles in certain typical high-altitude areas, finding that these areas encounter more than 120, or even more than 200, freeze–thaw cycles per year. Such frequent freeze–thaw cycles deliver significant impact on the performance of asphalt pavements, with cracks becoming a typical problem in high-altitude areas. Such factors as cold weather, large temperature differences, and frequent freeze–thaw cycles have adverse effects on the stress of asphalt pavement materials, resulting in cracks in pavements. By simulating the conditions of such frequent freeze–thaw cycles, this study explores the law of changes in the performance of roads made from asphalt and asphalt mixtures, as well as the low-temperature crack resistance properties of asphalt and asphalt mixtures in frequent freeze–thaw cycles. It is found that the performance of the three different types of asphalt binders used in the test shows basically no change after 50 freeze–thaw cycles, and the asphalt types have a significant effect on the low-temperature performance of asphalt mixtures. The modified asphalt shows a higher viscosity than the matrix asphalt, with better toughness than that of the matrix asphalt at low temperature. Frequent freeze–thaw cycles significantly influence the low-temperature splitting tensile strength and water stability of asphalt mixtures; with increased freeze–thaw cycles, the splitting strength and freeze–thaw splitting tensile strength ratio will gradually decrease to a significant level. The freeze–thaw conditions are found delivering remarkable influence on the low-temperature splitting tensile strength and water stability of asphalt mixtures. The research results of this study provide a basis for the selection of asphalt pavement materials as well as the optimal design of mixtures in high-altitude area like the Qinghai-Tibet Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.