Abstract

In order to study the influence of freezing-thawing cycles on shear strength of seasonal frozen soil in northeast China, silty clay, typical soil in Jilin region, was selected. 20 groups of specimens were carried out by quick shear tests considering soil water content and the number of freezing-thawing cycling. The test results indicate that soil cohesion presents the slight fluctuation with the increase of water content, and the maximum value reaches around the peak of liquid limit. Internal friction angle of soil shows the sharp drop and the extent changes between 40% - 60%. The soil cohesion gradually declines with the increase of the number of freeze-thawing cycling. Therefore, the effect of the first freezing-thawing cycle on soil cohesion is obvious, and cohesion gradually tend to be stable after 7 freezing-thawing cycles. The final value of cohesion is approximate a third to a half of the unfrozen soil. The internal friction angle of soil increases with the augment of cycling number of freezing-thawing, which is related to the water content. The higher water content will bring about the greater growth rate of friction angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call