Abstract
Free volume and medium-range order (MRO) present in rapidly solidified ribbons (RSRs) and bulk metallic glasses (BMGs) of Zr52Ti6Al10Cu18Ni14 have been probed by high resolution electron microscopy, fluctuation microscopy, positron annihilation and differential scanning calorimetry. In the as-solidified condition, RSRs showed higher free volume and lower MRO in comparison to BMGs. Within BMGs, the central regions showed higher MRO and lower free volume than the peripheral regions. Uniform deformation of BMGs and RSRs modified their structures, where in, free volume increased in the former and reduced in the latter. These changes in structures led to work hardening in RSRs and work softening in BMGs. Such behaviour could be explained by invoking a concept of critical free volume in the glass phase. For samples (in as-solidified condition) having free volume higher than the critical value, free volume decreased with deformation and showed work-hardening behaviour. In contrast, the work softening behaviour was noticed in samples having free volume lower than the critical free volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.