Abstract
It is well known that helium (He) molecules that remain inside micropores after free-space calibration at a low temperature (77.4 K) affect the shape of an adsorption isotherm, especially in a very low relative pressure region. This negative effect of the remaining He leads to a misunderstanding of the porous characteristics, such as micropore size distribution and surface properties. However, it is still believed that such erroneous interpretations are limited to narrow microporous materials such as activated carbon and measurements at low temperatures, namely the measurement of the adsorption of N2 and Ar at their boiling points. Here we report a systematic investigation of the influence of free-space calibration using He on microporous, mesoporous and non-porous materials. Zeolite Y, mesoporous silica, carbon black and aerosil 200 were used for the measurements. N2, H2O and CO2 adsorption isotherms were measured at 77.4, 298 and 298 K, respectively. Free-space calibration was carried out before and after the isotherm measurement for each sample. Although the influence of the He that remained in the sample was small for the non-porous sample, the shape of the isotherms for the other samples in a low relative pressure region was rather affected by the timing of the free-space calibration even for the mesoporous sample, and at an ambient temperature.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have