Abstract

The objective of this study was to identify, through kinetic analysis of individual elementary reactions, the conditions under which a simple first-order photobleaching kinetic model is sufficient for quantitative fluorescence measurements, and those under which more complex photobleaching kinetics must be considered. Three model systems of various fluorophore densities and distributions were employed to verify the kinetic analysis. The results showed that the photobleaching kinetics of free fluorescein at concentrations lower than 5 μM corresponded closely to a single exponential function and therefore involved predominantly simple unimolecular or pseudounimolecular photo-chemical reactions. When fluorescein was bound to polyvinyl alcohol (PVA) molecules, the photobleaching kinetics of the densely labeled PVA deviated more from a single-exponential function than sparsely labeled PVA. When fluorescein was bound to a DNA probe, the photobleaching kinetics were more complex and deviated significantly from a single-exponential function, due to one or more bimolecular processes with apparent concentration-dependent photobleaching rate constants. The practical applications of time-integrated fluorescence emission are discussed in the context of simple and complex photobleaching kinetics. Cytometry 27:213–223, 1997. © 1997 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.