Abstract
The high-resolution calorimetric study was carried out on octylcyanobiphenyl liquid crystal (LC) confined to various controlled-pore glass (CPG) matrices with silane-treated surface. The diameter of the voids cross section ranged between 23.7 and 395 nm. The results are compared to those obtained previously on CPG voids nontreated with silane. We found a striking similarity between the shifts in the isotropic to nematic and nematic to smectic-A phase transition temperatures as a function of the void radius in which order parameter variations at the LC-void interface play the dominant role. Weaker temperature shifts are observed in silane-treated samples, where surface ordering tendency is larger. In nontreated samples, a finite-size scaling law in the maximum value of the heat capacity at the nematic to smectic-A transition was observed for void diameters larger than 20 nm. In silane-treated samples, this behavior is considerably changed by surface wetting interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.