Abstract

Materials that undergo ion-insertion coupled electron transfer are important for energy storage, energy conversion, and optoelectronics applications. Cyclic voltammetry is a powerful technique to understand electrochemical kinetics. However, the interpretation of the kinetic behavior of ion insertion electrodes with analytical solutions developed for ion blocking electrodes has led to confusion about their rate-limiting behavior. The purpose of this manuscript is to demonstrate that the cyclic voltammetry response of thin film electrode materials undergoing solid-solution ion insertion without significant Ohmic polarization can be explained by well-established models for finite diffusion. To do this, we utilize an experimental and simulation approach to understand the kinetics of Li+ insertion-coupled electron transfer into a thin film material (Nb2O5). We demonstrate general trends for the peak current vs scan rate behavior, with the latter parameter elevated to an exponent between limiting values of 1 and 0.5, depending on the solid-state diffusion characteristics of the film (diffusion coefficient, film thickness) and the experiment timescale (scan rate). We also show that values < 0.5 are possible depending on the cathodic potential limit. Our results will be useful to fundamentally understand and guide the selection and design of intercalation materials for multiple applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.