Abstract

Nanocrystalline thin films of Sb37.07Mn1.95Se60.98 with different thickness (7, 20, 40, and 80 nm) were successfully prepared via inert gas condensation technique. As-deposited films showed amorphous structure by grazing incident in-plane X-ray diffraction (GIIXD) technique. All films of different thicknesses were heat treated at 433 K for 90 min. The GIIXD pattern of annealed films showed nanocrystalline orthorhombic structure. The effect of thickness of annealed films on the structure and optical properties was studied. Calculated particle sizes are 20.67 and 24.15 for 40 and 80 nm thickness of heat treated film. High resolution transmission electron microscope HRTEM images and their diffraction patterns proved that 40 nm film thickness annealed at different temperature has nanocrystalline nature with observed (high) crystallinity that increases with annealing temperature. Blue shift of optical energy gap was observed from 1.68 to 2 eV with decreasing film thickness from 80 to 7 nm. Film thickness of 40 nm was exposed to different heat treated temperatures from 353 to 473 K to detect its effect on structure and optical and electrical properties. Blue shift from 1.73 to 1.9 eV was observed in its optical band gap due to direct transition as heat treatment temperature decreasing from 473 to 353 K. Electrical conductivity was studied for different heat treated films of thickness 40 nm, and intrinsic conduction mechanism is dominant. The activation energy Ea was affected by heat treatment process.

Highlights

  • Thin film technology is very important for many modern and promising technological applications, the emphasis on examining the surface science increasing the interest of physicists on account of its proven and many semiconductor devices applications like solar cells

  • The energy dispersive X-ray analysis (EDX) results demonstrate that the thin film is composed of the elements Sb, Mn, and Se with the atomic ratios of 37.07, 1.95, and 60.98 respectively

  • Sb37.07Mn1.95Se60.98 nanostructure thin film was physically synthesized with inert gas condensation method

Read more

Summary

Introduction

Thin film technology is very important for many modern and promising technological applications, the emphasis on examining the surface science increasing the interest of physicists on account of its proven and many semiconductor devices applications like solar cells. Among these thin films, nanostructure thin films occupy large area in most modern applications because of its unique new properties that depend on the size quantization effect [1]. The effect of film thickness on the optical properties was discussed. The effect of heat treatment on the structure and optical and electrical properties was demonstrated

Experimental
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call