Abstract

Fibers are applied in construction work to improve the strength and avoid brittle failure of soil. In this paper, we analyze the impact mechanism of fiber type and length on the immobilization of microorganisms from macroscopic and microscopic perspectives with fibers of 0.2% volume fraction added to microbial-induced calcite precipitation (MICP)-treated sand. Results show the following: (1) The unconfined compressive strength (UCS) of MICP-treated sand first increases and then decreases with increasing fiber length because short fiber reinforcement can promote the precipitation of calcium carbonate, and the network formed between the fibers limits the movement of sand particles and enhances the strength of the microbial solidified sand. However, the agglomeration caused by overlong fibers leads to uneven distribution of calcium carbonate and a reduction in strength. The optimal fiber length of polypropylene, glass, and polyvinyl alcohol fiber is 9 mm, and that of basalt fiber is 12 mm. (2) The UCS of the different fiber types, from small to large, is basalt fiber < polypropylene fiber < glass fiber < polyvinyl alcohol fiber because the quality of the fiber monofilament differs. More fibers result in more a evident effect of interlacing and bending on sand and higher strength in consolidated sand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.