Abstract
This in vitro study evaluated the influence of femtosecond laser (fs-laser)-generated patterns on shear bond strength (SBS) of composite resin bonded to human dentin under simulated pulpal pressure. Laser treatment was used to produce two different patterns on dentin surfaces. Three test groups and a control group without laser treatment under pulpal pressure were investigated. Dentin discs of 800 nm thickness were cut from 60 extracted caries-free human molars. Using a perfusion machine, the discs were exposed to Ringer solution on their basal surfaces. Clearfil SE Bond/Herculite XRV system was used. The samples were stored in distilled water and thermocycled. Bonding failures caused by a test set-up to challenge SBS were analyzed by scanning electron microscope (SEM). An 80 μm-sized cube-shaped pattern caused more cohesive failures in dentin or resin compared with the 160 μm-sized cube-shaped pattern. Weibull statistics demonstrated a significant difference between the two laser patterns, but only the test group with small-sized laser pattern was significantly different from the control group. The Weibull moduli ranged from 4.3 to 9.6 (control group). The 160 μm-sized pattern enhanced the bonding quality and avoided dentin weakening. It was concluded that fs-laser treatment in a 160 μm-sized cube-shaped pattern enabled a simplified bonding procedure by dispensing the primer without affecting SBS, compared with the control group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.