Abstract
In this work, Fe-doped ZnO thin films were prepared by sol–gel method on Si and glass substrates and influence of Fe-doping concentration on the structural and optical properties of the films was studied. The X-ray diffraction (XRD) analyses show that all the ZnO thin films prepared in this work have a hexagonal wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. After 1 at% Fe is doped, the crystalline quality and the preferential orientation of ZnO thin film are improved. However, when Fe-doping concentration is above 1 at%, the crystalline quality and the preferential orientation of ZnO thin film is weakened in turn. The surface morphology analyses of the samples show that the ZnO grain sizes tend to decrease with the increase of Fe-doping concentration. Fe-incorporation hardly influences the transmittance in the visible range, but the optical band-gaps of ZnO thin films gradually increase with the improved Fe-doping concentration. The photoluminescence spectra display that all the samples have an ultraviolet emission peak centered at 381 nm and the 1 at% Fe-doped ZnO thin film has the strongest ultraviolet emission peak. The above results suggest that 1 at% Fe-incorporation can improve the crystalline quality and enhance the ultraviolet emission of ZnO thin film.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have