Abstract
AbstractA series of faujasite zeolites was modified by extraframework Al (AlEF) with the goal to investigate the influence of such species on the intrinsic Brønsted acidity and catalytic activity towards paraffin cracking. The chemical state of AlEF and zeolite acidity were investigated by 27Al MAS NMR and COads IR spectroscopy, H/D exchange reaction, and propane cracking. Strongly acidic defect‐free Y zeolites were obtained by substitution of framework Al by Si with (NH4)2SiF6. In accordance with the next‐nearest‐neighbor model, the intrinsic acidity of the protons increased with decreasing framework Al density. This increased acidity was evidenced by an increased shift of the OH stretching vibration upon CO adsorption in COads IR spectroscopy and by an increased H/D exchange rate in H/D exchange reactions with perdeuterobenzene. All of the acid sites in these zeolites were of equal strength beyond a certain Si/Al ratio. The increased acidity resulted in an enhanced propane cracking activity. Modification of a model dealuminated Y zeolite by AlEF only resulted in a small fraction of cationic AlEF species, because it was difficult to control the ion exchange process. In comparison, commercial ultrastabilized Y zeolites contained less AlEF and these species were predominantly present in cationic form. The rate of propane cracking strongly correlated to the concentration of Brønsted acid sites perturbed by cationic AlEF species. The results of MQMAS 27Al NMR spectroscopy confirmed the presence of sites perturbed by AlEF and unaffected framework Al sites. Zeolites with higher intrinsic cracking activities contained a higher proportion of perturbed sites. Although COads IR and H/D exchange methods proved to be suitable methods to probe the acidity of Y zeolites free from AlEF, they were less suitable to predict the reactivity if the Brønsted acid sites were affected by cationic AlEF species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.