Abstract

The time-dependent governing acoustic-difference equations and boundary conditions are developed and solved for sound propagation in an axisymmetric (cylindrical) hard-wall duct without flow and with spinning acoustic modes. The analysis begins with a harmonic sound source radiating into a quiescent duct. This explicit iteration method then calculates stepwise in real time to obtain the steady solutions of the acoustic field. The transient method did not converge to the steady-state solution for cutoff acoustic duct modes. This has implications as to its use in a variable-area duct, where modes may become cutoff in the smal-area portion of the duct. For single cutoff mode propagation the steady-state impedance boundary condition produced acoustic reflections during the initial transient that caused finite instabilities in the numerical calculations. The stability problem is resolved by reformulating the exit boundary condition. Example calculations show good agreement with exact analytical and numerical results for forcing frequencies above, below, and nearly at the cutoff frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.