Abstract
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NO x emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.