Abstract
The rapid and premature reduction of platinum(IV) complexes in vivo is a significant impediment to these complexes being successfully employed as anticancer prodrugs. This study investigates the influence of the platinum(IV) coordination sphere on the ease of reduction of the platinum center in various biological contexts. In the presence of the biological reductants, ascorbate and cysteine, platinum(IV) complexes with dicarboxylato equatorial ligands were observed to exhibit lower reduction potentials and slower reduction rates than analogous platinum(IV) complexes with dichlorido equatorial ligands. Diaminetetracarboxylatoplatinum(IV) complexes exhibited unusually long half-lives in the presence of excess reductants; however, the complexes exhibited moderate potency in vitro, indicative of rapid reduction within the intracellular environment. By use of XANES spectroscopy, trans-[Pt(OAc)2(ox)(en)] and trans-[PtCl2(OAc)2(en)] were observed to be reduced at a similar rate within DLD-1 cancer cells. This large variability in kinetic inertness of diaminetetracarboxylatoplatinum(IV) complexes in different biological contexts has significant implications for the design of platinum(IV) prodrugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.