Abstract

This work focused on the verification of the electrical parameters and the durability of side connectors installed in glass–glass photovoltaic modules. Ensuring the safe use of photovoltaic modules is achieved, among others, by using electrical connectors connecting the PV cell circuit inside the laminate with an external electric cable. In most of the cases for standard PV modules, the electrical connector in the form of a junction box is attached from the back side of the PV module. The junction box is glued to the module surface with silicone where the busbars were previously brought out of the laminate through specially prepared holes. An alternative method is to place connectors on the edge of the module, laminating part of it. In such a case, the specially prepared “wings” of the connector are tightly and permanently connected using laminating foil, between two glass panes protecting against an electrical breakdown. Additionally, this approach eliminates the process of preparing holes on the back side of the module, which is especially complicated and time-consuming in the case of glass–glass modules. Moreover, side connectors are desirable in BIPV applications because they allow for a more flexible design of installations on façades and walls of buildings. A series of samples were prepared in the form of PV G-G modules with side connectors, which were then subjected to testing the connectors for the influence of environmental conditions. All samples were characterized before and after the effect of environmental conditions according to PN-EN-61215-2 standards. Insulation resistance tests were performed in dry and wet conditions, ensuring full contact of the tested sample with water. For all modules, before being placed in the climatic chamber, the resistance values were far above the minimum value required by the standards, allowing the module to be safely used. For the dry tests, the resistance values were in the range of GΩ, while for the wet tests, the obtained values were in the range of MΩ. In further work, the modules were subjected to environmental influences in accordance with MQT-11, MQT-12, and MQT-13 and then subjected to electrical measurements again. A simulation of the impact of changing climatic conditions on the module test showed that the insulation resistance value is reduced by an order of magnitude for both the dry and wet tests. Additionally, one can observe visual changes where the lamination foil is in contact with the connector. The measurements carried out in this work show the potential of side connectors and their advantage over rear junction boxes, but also the technological challenges that need to be overcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.