Abstract

An experimental study of the effects of hydrogen and methane proportions, Compression Ratio (CR) and equivalence ratio (∅) on the Knock Occurrence Crank Angle (KOCA), the Combustion Duration (ΔθCD) and the compression Polytropic coefficient (n) is carried out in this paper. These parameters were estimated through an alternative method that uses the average engine indicator diagram and the first derivative concept. The tests were conducted in a 2 kW Cooperative Fuel Research Engine (CFR) wherein the effect of inlet pressure on KOCA was also studied. To evaluate these effects, a factorial design of experiment and an one-factor Analysis of Variance (ANOVA) were conducted. According to the statistical analysis the evaluated engine operating conditions significantly influence the combustion parameters; however, the analysis revealed that the inlet pressure does not influence KOCA. Moreover, validated empirical correlations to estimate KOCA, ΔθCD and Critical Compression Ratio (CCR) as a function of engine operating conditions were proposed. It was demonstrated that actual Mass Fraction Burned (MFB) curves can be fitted with a = 2.8 and m = 2.4 which are the so-called efficiency and form factors of the Wiebe function, respectively. These values for hydrogen and methane mixtures are different from the values widely used for conventional fuels, i.e. a = 5.0 and m = 2.0. In the present study, the compression polytropic coefficients as a function of engine operating conditions were reported and were found to be ranging from 1.21 to1.25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.