Abstract

Fe-3.8wt%Si transformer steels were processed using two different additive manufacturing (AM) techniques, laser powder bed fusion (LPBF) and directed energy deposition (DED). While the LPBF processed samples exhibited a strong <001> orientation of the BCC grains along the build axis, the DED processed samples exhibited a randomized texture along the build axis. DED processed samples showed substantially coarser columnar grains as compared to their LPBF counterparts. The columnar grains exhibited a substantial number of low-angle sub-grain boundaries. All samples exhibited very good soft magnetic properties, with saturation magnetization (Ms) values ranging from 205 - 232 emu/gm, and coercivity (Hc) values ranging from 1.2 – 4.2 Oe. The Coercivity (Hc) values were significantly lower when the magnetic field was applied parallel to the build axis, as compared to being perpendicular, which can be rationalized based on the columnar nature of the grains, resulting in a higher number density of grain boundaries in case of the field applied perpendicular to the build axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call