Abstract

Study of the statistical parameters of the Earth’s random microseismic field makes it possible to obtain estimates of the properties and structure of the Earth’s crust and upper mantle. Different approaches are used to observe and process the microseismic records, which are divided into several groups of passive seismology methods. Among them are the well-known methods of surface-wave tomography, the spectral H/V ratio of the components in the surface wave, and microseismic sounding, currently under development, which uses the spectral ratio V/V0 of the vertical components between pairs of spatially separated stations. In the course of previous experiments, it became clear that these ratios are stable statistical parameters of the random field that do not depend on the properties of microseism sources. This paper proposes to expand the mentioned approach and study the possibilities for using the ratio of the horizontal components H1/H2 of the microseismic field. Numerical simulation was used to study the influence of an embedded velocity inhomogeneity on the spectral ratio of the horizontal components of the random field of fundamental Rayleigh modes, based on the concept that the Earth’s microseismic field is represented by these waves in a significant part of the frequency spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.