Abstract

The influence of electron irradiation on the resistance of the NOVER-1 resist to ion-beam etching is studied. Etching is carried out by argon ions with energies between 300 and 2500 eV. It is found that, depending on the energy and angle of incidence of the ions on the surface of the resist, electron irradiation may either speed up or slow down the NOVER-1 etching. A clear correlation is observed between the penetration depth of the ions in the resist and the influence of the electron irradiation on the resistance of the resist to etching. At ion energies higher than 500 eV (ion penetration depth ≳3.5 nm) the resistance decreases, passes through a minimum at low electron irradiation doses, and returns to the etching rate of the initial resist at high doses. For glancing etching angles (∼ 70° to the surface normal) and low ion energies (300 eV), i.e., small ion penetration depths (≲2.5 nm), an electron-irradiated resist is etched more slowly than the initial resist at all the electron irradiation doses studied. This effect may be used to enhance the resistance of resist structures whose height exceeds their width, which in this case is determined mostly by the rate of etching of the inclined facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.