Abstract

Many factors have been identified to influence the electrical transport characteristics of graphene field-effect transistors. In this report, we examine the influence of the exposure current level used during electron beam lithography (EBL) for active region patterning. In the presence of a self-assembled hydrophobic residual layer generated by oxygen plasma etching covering the top surface of the graphene channel, we show that the use of low EBL current level results in higher mobility, lower residual carrier density, and charge neutrality point closer to 0 V, with reduced device-to-device variations. We show that this correlation originates from the resist heating dependent release of radicals from the resist material, near its interface with graphene, and its subsequent trapping by the hydrophobic polymer layer. Using a general model for resist heating, we calculate the difference in resist heating for different EBL current levels. We further corroborate our argument through control experiments, where radicals are either intentionally added or removed by other processes. We also utilize this finding to obtain mobilities in excess of 18 000 cm2/V s on silicon dioxide substrates. We believe these results are applicable to other 2D materials such as transition metal dichalcogenides and nanoscale devices in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.