Abstract

AbstractOxygen mobility was studied by oxygen isotopic exchange on three electrodes used in Solid Oxide Electrolyser Cells under polarization (La0.8Sr0.2MnO3 (LSM), La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) and La2NiO4+δ (LNO)). The rate of the surface and the bulk mechanisms for oxygen mobility is depending on the type of conductivity (electronic conduction or mixed ionic and electronic conductivity). It is shown that a one oxygen atom exchange is dominant for the surface path whereas a two oxygen atoms mechanism dominates for the bulk path. The rate constant for the bulk path is much higher than the one for the surface path by two orders of magnitude. Additionally, polarized oxygen isotopic exchange revealed that electrode overvoltage increases significantly the rate constant for the surface path, whereas its impact on the bulk path is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.