Abstract
In this paper, we perform coupled optical and electrical simulation for core–shell junction GaAs nanowire array solar cells to obtain the important physical insights of how the cell efficiency is affected by various key parameters, including core–shell doping, junction position, carrier lifetime, and surface effect. Our study reveals that junction design in core–shell nanowires in terms of doping and geometry is largely restricted and affected by the small nanowire dimension, requiring different optimization from those of conventional planar solar cells. To take advantage of the radial p-n junction, high core and shell doping are essential to achieve effective radial carrier collection. Moreover, maintaining thin nanowire shell could effectively offset the detrimental surface effect for improved efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.