Abstract

The nanosized Fe50Ni50 particles were synthesized by a newly developed electric field-assisted deposition technology in a high energetic cluster deposition system. Their microstructures and lattice characteristics were observed by in situ TEM. The magnetic properties were characterized by a superconducting quantum interference device magnetometer. The purpose of the application of electric field during deposition is to accelerate the condensed nanoparticles to form the compact films with in-plane magnetic softness. The overlarge electric field can induce the appearance of lattice kinks and shoulder characteristics of loops. The in situ variable temperature TEM experiments with the measurement of magnetic properties indicated that excellent in-plane magnetic softness could be obtained by annealing. The thermomagnetization curves verified the ferromagnetic characteristics of the deposited films without any magnetic impurity phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.