Abstract

Zonally oscillating seasonal equatorial winds generate pairs of upwelling and downwelling Kelvin waves in the Equatorial Indian Ocean, which then advance in to the coastal Bay of Bengal. The first (second) equatorial upwelling Kelvin wave has its origin in the western (eastern) basin, whereas the downwelling Kelvin waves originate in the central basin. The observed interannual variability of these Kelvin waves is highly governed by the associated zonal wind changes in the central and eastern equatorial Indian Ocean during the anomalous years. The second downwelling (upwelling) Kelvin wave is absent (weak) during El Niño (La Niña) years, whereas the second upwelling Kelvin wave strengthened during El Niño years both in the equatorial Indian Ocean and Bay of Bengal. The large scale off equatorial Rossby waves occasionally feedback the equatorial Kelvin waves, which then strengthen the Bay of Bengal coastal Kelvin waves. The coastal Kelvin waves and the associated radiated Rossby waves from east play a dominant role in the mesoscale eddy generation in Bay of Bengal. The analysis of cyclogenesis characteristics in the bay over the past 65 years revealed that the active (suppressed) phases of cyclogenesis are coinciding with the downwelling (upwelling) planetary waves which influence the cyclone heat potential by altering the thermocline depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call