Abstract

Dysporium (Dy)-substituted W-type barium hexaferrites were prepared by the citrate sol–gel-method. Crystalline structure, morphology, magnetic properties, DC resistivity and microwave absorption properties of BaNi2Dy x Fe16−x O27 (x = 0–0.9) were studied using X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer and vector network analyzer and sensitive source meter, respectively. Single-phase W-type barium hexaferrites, with a chemical composition of BaNi2Dy x Fe16−x O27 (x = 0–0.9), were formed by being heated at 1250°C for 4 h in air. The magnetic properties such as saturation magnetization (M s ), and coercivity (H c) were calculated from hysteresis loops. Hysteresis loop measurements show that the coercivity values lie in the range of 530–560 Oe with increasing Dy content. It was also observed that magnetization decreases with the increase of Dy content. The DC resistivity was observed to increase from 0.83 × 107 to 6.92 × 107 Ω cm with increasing Dy contents due to the unavailability of Fe3+ ions. Microwave absorption properties of hexaferrite (70 wt%)–acrylic resin (30 wt%) composites were measured by the standing-wave-ratio (SWR) method in the range from 12 to 20 GHz. For sample with x = 0.6, a minimum reflection loss of −40 dB was obtained at 16.2 GHz for a layer of 1.7 mm in thickness. Sample with x = 0.9 had wide bandwidth absorption in the frequency range of 13.5–18 GHz with reflection losses less than −15 dB. Meanwhile the minimum reflection point shifts toward higher frequency with the increase of Dy content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call