Abstract
Based on mean-field theory (MFT) arguments, a general description for discontinuous phase transitions in the presence of temporal disorder is considered. Our analysis extends the recent findings [C. E. Fiore etal., Phys. Rev. E 98, 032129 (2018)2470-004510.1103/PhysRevE.98.032129] by considering discontinuous phase transitions beyond those with a single absorbing state. The theory is exemplified in one of the simplest (nonequilibrium) order-disorder (discontinuous) phase transitions with "up-down" Z_{2} symmetry: the inertial majority vote model for two kinds of temporal disorder. As for absorbing phase transitions, the temporal disorder does not suppress the occurrence of discontinuous phase transitions, but remarkable differences emerge when compared with the pure (disorderless) case. A comparison between the distinct kinds of temporal disorder is also performed beyond the MFT for random-regular complex topologies. Our work paves the way for the study of a generic discontinuous phase transition under the influence of an arbitrary kind of temporal disorder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.