Abstract

The aim of this study was to evaluate the extent of property changes caused by heating the distal portion of heat-activated nickel-titanium (NiTi) wires. Forty preformed heat-activated NiTi archwires (3MUnitek, Monrovia, CA, USA) with anominal cross-section of 0.018″ were used in this study. The archwires were divided into acontrol group, not submitted to heat treatment and, thus, maintaining the as-received properties, and an experimental group, in which the archwires were submitted to heat treatment for distal bending at one end. Wire segments of control and experimental groups were submitted to differential scanning calorimetry (DSC) and Vickers microhardness measurements. The DSC results suggest local recrystallization and precipitate dissolution at the heat-treated tip, which decreases as the distance to the wire's tip increases. Vickers microhardness tests revealed significant changes for distances between 6and 8 mm from the wire's tip. Heating the distal portion of heat-activated NiTi archwires should be performed with care since this clinical procedure may compromise the performance of these wires to a distance of 8 mm from the archwire end. Heat treatment for distal bending in heat-activated NiTi archwires may be performed, with little impact on the areas adjacent to heat treatment. In cases presenting molars requiring significant orthodontic corrections, it should be preferred to apply other techniques to avoid archwire sliding, such as crimpable stops, or to have flame control to avoid placing aheat-treated section in the tubes of these molars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.