Abstract

Dimethylphenol isomers (DMP) pose a great threat to the environment, and the electrooxidation (EO) process proves to be an extraordinarily effective method to degrade DMP. However, the EO performance is affected by the molecular structure of DMP and the adopted experimental parameters. In this study, the effects of 2,4-DMP and 2,6-DMP on the working potential, limiting current density (Jlim), and pH were systematically analysed, with Ti-mesh plates used as the cathode and Ti/PbO2 as the anode. The peak potentials of 2,4-DMP and 2,6-DMP were determined to be 0.83 V and 0.77 V by cyclic voltammetry, with Jlim were 2.5 mA·cm−2 and 2.0 mA·cm−2, respectively. The whole process exhibited pseudo-first-order kinetics, and the kinetic constants (K) for the degradation of 2,4-DMP and 2,6-DMP were determined to be 0.0041 min−1 and 0.0150 min−1, respectively. Additionally, the optimal initial pH value for 2,4-DMP and 2,6-DMP was 5.0, where the highest hydroxyl (OH) radical density, as determined by the electron spin technique (ESR), was achieved at a higher current density. Comparatively, the OH radical density in the 2,6-DMP solution was lower than that in 2,4-DMP. In situ Fourier infrared (FT-IR) spectroscopy, GC–MS, and density functional theory (DFT) were employed to explore three possible degradation pathways. The main intermediates for 2,4-DMP degradation were determined to be quinone and ether, while that for 2,6-DMP degradation was quinone. According to the results of this study, the molecular structure (different methyl group positions on the benzene ring) has a great influence on the EO process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call