Abstract

In the presented work on chronoamperometry, the Cottrell model has been generalized by taking into account a thin porosity layer covering the surface of the electrode and Tafel kinetics of an electrode reaction. The effective diffusion coefficient inside a porosity layer is calculated by Bruggeman’s law. It is shown that in the quasi-stationary approximation of diffusion inside a thin porous layer, the chronoamperometry problem can be solved analytically. The obtained solution has been compared with the results of direct numerical simulations and a good agreement is shown. Limiting cases of the solution related to low and high porosity are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.