Abstract

The aim of this study was to evaluate cross-sectional area of the abutments, strain distribution in the periimplant bone, stress in the abutments and dental root-analog implant by different abutment design under different loading conditions, through three-dimensional finite element analysis. Two three-dimensional finite element models were established. Two types of abutments, oval cross section abutment (OCSA) and circular cross section abutment (CCSA) were designed, keeping the size of the thinnest implant wall 0.75 mm. Two types of load were applied to the abutment in each model: 100 N vertical load (V), 100 N vertical/50 N horizontal load (VH). The biomechanical behaviors of abutments, implants, and periimplant bone were recorded. The cross-section area of OCSA is 36.5% larger than that of CCSA. In implants, the maximum von Mises stress value in OCSA design was 24.6% lower than that in CCSA design under V and under VH. In abutments, the maximum von Mises stress value in OCSA design was 40.0% lower than that in CCSA design under V, the maximum von Mises stress value in OCSA design was 12.2% lower than that in CCSA design under VH. The irregular design offers advantages over regular design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.