Abstract

The simulation of macrosegregation in a 2.45-ton steel ingot with the three-phase mixed columnar-equiaxed model was presented previously. The results showed an overestimation of the intensity of bottom negative segregation. The reason is due to the assumed globular morphology for the equiaxed crystal. Therefore, in this paper a simple approach is suggested to treat the dendritic morphology of equiaxed crystals. Three aspects are improved: the drag force between the moving equiaxed crystals and the surrounding melt, the mechanism of the columnar-to-equiaxed transition, the packing limit of the equiaxed crystals. The modified model is used to calculate the macrosegregation of the same ingot. It is found that the modified model predicts less severe negative segregation in the bottom equiaxed zone than the previous globular equiaxed model does, i.e. it agrees better to the experiment. The model considering simplified-dendritic morphology improves the calculation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.