Abstract

AbstractRecent studies of Himalayan glacier recession indicate that there is wide variability in terminus retreat rate and mass balance in the different sectors of the mountain range, primarily linked to the topography and climate of the region. Variable retreat rates of glacier termini and inadequate supporting field data (e.g. mass balance, ice thickness, velocity, etc.) in the Himalayan glaciers make it difficult to develop a coherent picture of climate change impacts. In this study, the results of a detailed mapping campaign and ground-based measurements of ablation rate, terminus retreat and ice loss are reported for the period 2003–10. In addition, background information from an old glacier map (Survey of India, 1962) was compiled and terminus recession measurements were carried out from 1990 field photographs of Chorabari Glacier, central Himalaya. Our ablation stake network results suggest that the influence of debris cover is significant for Chorabari Glacier mass balance and terminus retreat. The terminus survey finds that the glacier is retreating, but at a lower rate than many other non-debriscovered glaciers in the region. The recession and ablation data (particularly in the upper ablation area at higher altitudes) suggest that the ice volume loss of the glaciers is of greater magnitude than the slow terminus retreat and, if the process continues, the lowermost part of the glacier may reduce to a quasi-stationary position while significant ice loss continues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call