Abstract
Tacrolimus is characterized by a highly variable pharmacokinetics (PK) and a small therapeutic window. It is metabolized specifically by the CYP3A isoenzymes. This study aimed to determine, in kidney transplant patients, the influence of different genotypic clusters involving these SNPs CYP3A4*1B, CYP3A4*22, and CYP3A5*3 on Tacrolimus bioavailability during the first (PTP1) and the second (PTP2) posttransplant phase (PT). We included kidney transplant patients who received Tacrolimus and underwent drug monitoring by C0 monitoring. CYP3A4 and CYP3A5 genotyping were performed using PCR-RFLP. We classified the patients into four groups: Slow, Intermediate, rapid, and ultra-rapid metabolizers. We included 80 patients. The Tacrolimus dose-normalized C0 (C0/D ratio) was significantly decreased in intermediate, rapid, and ultra-rapid comparing with slow metabolisers. During PTP1 only CYP3A5*3 and CYP3A4*22 polymorphisms correlate significantly with C0/D ratio. Regardless of the PT phase and during the late one, only the CYP3A4 polymorphisms correlate significantly with the C0/D ratio. We identified that these SNPs are all associated independently with Tacrolimus exposure in different PT phases. Moreover, we are the first to define a genotypic cluster including the three CYP3A SNPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have