Abstract

Computed tomography (CT) scanners are equipped with automatic tube current modulation (ATCM) systems that adjust the current to compensate for variations in patient attenuation. CT dosimetry variables are not defined for ATCM situations and, thus, only the averaged values are displayed and analysed. The patient effective dose (E), which is derived from a weighted sum of organ equivalent doses, will be modified by the ATCM. Values for E for chest-abdomen-pelvis CT scans have been calculated using the ImPACT spreadsheet for patients on five CT scanners. Values for E resulting from the z-axis modulation under ATCM have been compared with results assessed using the same effective mAs values with constant tube currents. Mean values for E under ATCM were within ±10 % of those for fixed tube currents for all scanners. Cumulative dose distributions under ATCM have been simulated for two patient scans using single-slice dose profiles measured in elliptical and cylindrical phantoms on one scanner. Contributions to the effective dose from organs in the upper thorax under ATCM are 30-35 % lower for superficial tissues (e.g. breast) and 15-20 % lower for deeper organs (e.g. lungs). The effect on doses to organs in the abdomen depends on body shape, and they can be 10-22 % higher for larger patients. Results indicate that scan dosimetry parameters, dose-length product and effective mAs averaged over the whole scan can provide an assessment in terms of E that is sufficiently accurate to quantify relative risk for routine patient exposures under ATCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call