Abstract

Crystalline diamond (CD) particles have been incorporated in diamond-like carbon (DLC) film structure in order to improve DLC electrochemical corrosion resistance. This paper shows the investigation of CD-DLC friction behavior according to the CD average sizes and concentration. The films were growth over 304 stainless steel using plasma enhanced chemical vapor deposition. The response surface methodology was used to develop a mathematical modeling of friction for these films, using the experimental results, in order to identify parameters that control friction and construct tribological maps according to the CD average sizes. The presence of bigger CD particles (250 and 500 nm) increased the film roughness. Films with CD particles of 4 nm presented the most homogeneous friction map, with minor variation in friction coefficient with the increase/decrease of load and sliding speed even when the CD concentration increase. This result suggests that in CD-DLC films containing CD particles of 4 nm average size, the nanoparticles are better incorporated in DLC structure due to its average size (4 nm) that is near than DLC grain size and could occupy the nanospaces between DLC grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.