Abstract

Crystalline diamond (CD) particles are incorporated into diamond-like carbon (DLC) films in order to prevent CD–DLC electrochemical corrosion. In this paper, the influence of the diamond particle sizes on the electrochemical corrosion resistance of CD–DLC films was investigated. The films were grown over 304 stainless steel using plasma enhanced chemical vapor deposition. CD particles with 4 nm, 250 nm, 500 nm and 2–3 µm in diameter were incorporated into DLC during the deposition process. The investigation of CD–DLC electrochemical corrosion behavior was performed using potentiodynamic method. The results show that both protection efficiency and impedance increase with the decrease of I D / I G ratio. It means the increase of sp 3 bonds in DLC films reduces its electrochemical corrosion, improving the electrochemical protection efficiency and the impedance. Our results pointed out that CD–DLC films are promising corrosion protective coatings in aggressive solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.