Abstract
Iron-based biodegradable metals have been shown to present high potential in cardiac, vascular, orthopaedic and dental in adults, as well as paediatric, applications. These require suitable mechanical properties, adequate biocompatibility while guaranteeing a low toxicity of degradation products. For example, in cardiac applications, stents need to be made by homogeneous and isotropic materials in order to prevent sudden failures which would impair the deployment site. Besides, the presence of precipitates and pores, chemical inhomogeneity or other anisotropic microstructural defects may trigger stress concentration phenomena responsible for the early collapse of the device. Metal manufacturing processes play a fundamental role towards the final microstructure and mechanical properties of the materials. The present work assesses the effect of mode of rolling on the micro-texture evolution, mechanical properties and biodegradation behaviour of polycrystalline pure iron. Results indicated that cross-rolled samples recrystallized with lower rates than the straight-rolled ones due to a reduction in dislocation density content and an increase in intensity of {100} crystallographic plane which stores less energy of deformation responsible for primary recrystallization. The degradation resulted to be more uniform for cross-rolled samples, while the corrosion rates of cross-rolled and straight-rolled samples did not show relevant differences in simulated body solution. Finally, this work shows that an adequate compromise between biodegradation rate, strength and ductility could be achieved by modulating the deformation mode during cold rolling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.