Abstract

Ti-stabilized interstitial free steel subjected to eight passes, route BC room temperature equal channel angular pressing (ECAP) additionally was cold rolled (CR) up to 95 pct thickness reduction. Electron back-scattering diffraction and transmission electron microscopy characterized microstructural refinement and microtexture evolution, whereas the mechanical properties were assessed by uniaxial tensile tests. After 95 pct CR, the average high-angle grain boundary spacing reduces to 0.14 μm, whereas the high-angle boundary fraction increases to ~81 pct. The ECAP negative simple shear texture components rotate by ~15 deg around the transverse direction toward the rolling direction for up to 50 pct CR, with typical rolling textures observed at 95 pct CR. The decrease in boundary spacing produces a ~500 MPa gain in 0.2 pct proof stress, a ~600 MPa increase in ultimate tensile strength (UTS), and a ~4 pct loss in total elongation after 95 pct CR. Similar rates of decrease in work hardening correspond to comparable rates of cross and/or multiple slip events irrespective of the processing regime and substructural refinement. The fracture mode of the tensile samples changes from ductile to brittle type between ECAP and 95 pct CR and is attributed to the reduced work hardening capacity of the latter. The modified Hall–Petch equation shows that the convergence of high-angle boundary spacing values with their low-angle counterparts results in an increased contribution via boundary strengthening to the 0.2 pct proof stress and UTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call