Abstract
This study aimed at evaluating the influence of cortical layer and surgical techniques on the primary stability of implants in low-density bone. Two solid rigid polyurethane blocks with a density equivalent to 0.32 g/cm3 simulating cancellous bone were used. A short fiber-filled epoxy resin sheet of 2 mm was layered to one block to simulate cortico cancellous bone. A total of 40 implants were used in this study (n = 40). Twenty implants each (n = 20) were inserted in cancellous (Group 1) and cortico-cancellous bone (Group 2), of which 10 implants each (n = 10) were placed using undersized preparation technique with surgical drills-A and osteotomes-B, in both the groups. Insertion torque (IT) and implant stability quotient (ISQ) for each implant placed were assessed to determine the primary stability of each implant using a digital torque meter and resonance frequency analyzer, respectively. The values were statistically analyzed using an independent t-test (p < 0.05). Pearson's correlation analysis was performed to correlate between IT and ISQ. Technique B resulted in significantly higher IT and ISQ values in Group 1 (27.69 ± 1.2 N cm; 52.5 ± 1.05 ISQ) and Group 2 (38.8 ± 0.87 N cm; 70.1 ± 1.04 ISQ) compared to those with technique A (22.40 ± 1.62 N cm; 41.75 ± 1.20 ISQ and 33.24 ± 0.67 N cm; 63.72 ± 1.33 ISQ), respectively. Group 2 exhibited significantly higher IT and ISQ values as compared to Group 1 irrespective of the surgical technique employed (p < 0.05). The presence of the cortical layer significantly influenced the primary stability and preparing low-density bone with an undersized preparation technique using osteotomes that significantly increased the IT and ISQ. Undersizing the preparation site considerably will help achieve a significant increase in primary stability in the poor quality bone as in the posterior maxilla, thereby contributing to the success of the implant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have