Abstract

The influence of correlation and temperature on the electronic structure of bulk and thin film GdN has been studied using the s-f model, which combines the one electron band structure with a many body procedure. The tight binding linear muffin tin orbital (TB-LMTO) method was used to obtain the one electron band structure of the system. The s-f exchange coupling constants for each band were obtained from the spin polarized band structure of the system using a mean field model. Correlation effects are found to be present in the system. However they are not sufficiently strong to cause a correlation induced splitting in the spectrum. Some bands of the thin films of GdN exhibit splitting at T=Tc and it is due to the combined effect of correlation and temperature. The conduction bands of both the bulk and the thin films of GdN exhibit a red shift with respect to temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.