Abstract

The importance of promising composites in modern materials science is constantly increasing. The use of various fillers or additives is associated with their influence not only on the defining properties of the composite, but also on physical and mechanical characteristics of the material. In this case, the distribution of the additive and its wetting with a polymer play an important role. The problem highlighted in this article is the influence of different copper-containing fillers (copper (II) sulphate powder, micro-sized copper (II) oxide powder, and nano-structured copper (II) oxide-based hollow microspheres) on the technological and physical–mechanical properties of the composites based on polylactic acid (PLA). The hollow microspheres of copper (II) oxide have been obtained by ultrasonic spray atomization via pyrolysis of copper (II) nitrate. The structure of the copper-based additives has been studied using X-ray diffraction, scanning electron microscopy, and static light scattering. For the PLA-composites, scanning electron microscopy, differential scanning calorimetry, stress-strain properties testing, and density analysis have been performed. The plasticizing effect of polycaprolactone and polyethylene glycol has been studied for the highly filled PLA/CuSO4 composite. The samples of PLA with over 2 wt.% of CuO microspheres have a full volume-filling and percolation structure of the additive’s particles. Due to the regular spherical shape of the particles and a lower specific volume, CuO hollow microspheres are uniformly distributed in the PLA matrix acting as a structuring and reinforcing modifier. Differential scanning analysis showed heterogeneous crystallization on CuO particles with an increase in the degree of crystallinity and the melting point of the polymer. It has been shown that the pre-masterbatching technology and adding plasticizers to obtain PLA composites contribute minimizing defects and enhance mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.