Abstract

There are limited data in the literature concerning in vivo effects of dietary fat supplementation on enteric CH4 emissions from lactating dairy cows. The purpose of this experiment was to evaluate four dietary treatments designated as control (CON), brewers grains (BG), hominy meal and cold-pressed canola (HCC) and hominy meal only (HM) for their effects on CH4 emissions and milk production. Sixteen late lactation Holstein cows were used in pairs, in a double 4×4 Latin square experiment with the four dietary treatments fed as total mixed rations over 24d treatment periods. All diets contained ∼600gforage/kg dry matter (DM; 5kgDM of alfalfa hay and 7kgDM of perennial ryegrass silage/day). The CON diet contained 303g/kgDM of cracked wheat grain and 70g/kgDM of solvent extracted canola meal and the CON diet was formulated to contain ∼26g total fat/kgDM. For the BG, HCC and HM diets, part of the cracked wheat and solvent extracted canola was substituted with the designated fat supplement so that the resulting diets contained 51, 52 and 65g total fat/kgDM respectively. Fat supplementation did not influence DM intake and there were only small (P<0.05) positive effects on milk yield and negative effects on concentrations of milk fat and milk protein. The HM diet reduced (P<0.05) CH4 emissions when expressed either as gCH4/cow/d, gCH4/kgDM intake, or gCH4/L milk. The BG diet also (P<0.05) reduced CH4 emissions when expressed as gCH4/cow/d or gCH4/L milk, while the HCC diet decreased CH4 emissions in terms of gCH4/L milk. Combining data from the fat supplemented diets enabled comparison of CH4 emissions from the CON diet with CH4 emissions from the fat supplemented diets. Fat supplementation reduced (P<0.05) CH4 emissions: 500, 462gCH4/cow/d; 25.0, 23.2gCH4/kgDM intake and 23.3, 20.5gCH4/L milk for the CON and fat supplemented groups respectively. Similarly, by combining data from all fat supplemented groups, regression analysis revealed that fat supplementation reduced CH4 emissions for at least 7wk. Combining results of this investigation with data from the literature, we conclude that for each increase of 10g/kgDM in dietary lipid concentration, enteric emissions are reduced by 0.79gCH4/kgDM intake or ∼3.5% thereby allowing estimation of the magnitude of enteric CH4 abatement based on dietary fat supplementation.This article is part of the special issue entitled: Greenhouse Gases in Animal Agriculture – Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors; K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call