Abstract
The paper presents the results of erosive resistance investigation carried out on three-layer epoxy-polyurethane coating systems of different polyurethane top coat composition. Alumina nanoparticles with a grain size of 20 nm or silica nanoparticles with a grain size of 12 or 20 nm were applied for the top coat modification. Coating systems with top coats modified using silica nanoparticles with the grain size of 12 nm (nanocoatings) revealed the highest erosive resistance, whereas the lowest one was observed in the case of coating systems with unmodified top coats. Lower erosive wear intensity of nanocoatings follows on their relatively high hardness, as well as low surface roughness. Moreover, nanofillers contained in the top coat reduce the development of defects (pores, cracks) in its structure, increasing the erosive resistance of the coatings. Climatic ageing substantially influenced the formation of polyurethane coatings surface topography. Polyurethane coatings modified with nanofillers showed less change in their surface topography than did unmodified coatings. Therefore, the modification of polyurethane top coats with nanofillers decreases their surface susceptibility to destruction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have