Abstract

Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C–F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002–0.396 min−1 and defluorination yields of 0%–100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C–F bond dissociation energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call