Abstract

The nonlinear electrical characteristic of carbon nanodots (CNDs) has revealed important physical phenomena of charge trapping playing a dominant role in surface interactions. Functional groups on the surface of CNDs attract ambient water molecules which in turn act as charge traps and give rise to electrical hysteresis that plays a dominant role in understanding charge transport in CNDs on surface interactions. Hysteresis in the current–voltage response is further utilized to study the interaction of the CNDs with nitrogen dioxide gas as an external stimuli. The hysteresis area is observed to be dependent on the time of gas interaction with the CNDs, therefore revealing the interaction mechanism of the CNDs with the gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.