Abstract
Microcystin-LR (MC-LR) is a toxin produced by various cyanobacterial strains. Its cytotoxicity is due to inhibition of the protein phosphatases PP1 and PP2A, resulting in hyperphosphorylation of a number of functional and cytoskeletal proteins. To penetrate through the plasma membrane, MC-LR needs specific transporters such the organic anion-transporting polypeptides (OATP) that are highly expressed on the hepatocytes. Hence, our goal was to investigate the role of the membrane transport proteins for the cytotoxic effect of MC-LR on adhesive cell lines different from hepatocytes. We have used three cell lines - A549 (human lung carcinoma), SK-Hep-1 (human liver adenocarcinoma), FL (human amniotic normal cells), and two inhibitors of the OATP (cyclosporine A and captopril). To examine the cytotoxic effect of MC-LR we applied MTT and Neutral Red assays. In addition, a fluorescent staining of the mitochondria by JC-1 was performed. A dose-dependent cytotoxic effect was observed for the three cell lines, as this effect was most pronounced in A549. No cytotoxicity was detected when the captopril was added 2 h before treatment of the cells with MC-LR. Addition of captopril to the cells 2 h after treatment with MC-LR leads to enhancement of the cytotoxic effect. Reduced mitochondrial membrane potential after treatment with MC-LR was detected in the three cell lines, compared to untreated control cells. Results from the NR-cytotoxicity assay indicated that MC-LR does not affect the lysosomes. Captopril is an effective inhibitor of both OATP influx membrane transport proteins and the P-gp efflux pumps involved in the transport of MC-LR. It protects the cells from toxic effects of the cyanotoxin MC-LR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have