Abstract

In addition to the incineration of vegetation and litter layer, fires are also responsible for the formation of a water repellent layer with significantly different severity and spatial distribution patterns following different burning intensities. Those spatial distribution patterns have an enormous influence on soil wetting patterns, and on hydrological processes at different scales. This study attempts to understand the role of water repellence severity and spatial distribution patterns on soil, slope, and catchment water processes, and on the transmission of hydrological processes between different scales. The comparison between microplot (0.24 m2), plot (16 m2), and catchment (<1.2 km2) scales shows that water repellence spatial homogeneity enhances water fluxes transfer between the different scales. In fact, the more intense the fires, the more severe and spatially uniform the soil water repellency became. For burned areas with heterogeneous soil water repellency, overland flow produced in water repellent patches infiltrated downslope at hydrophilic sites, thereby reducing superficial water fluxes at wider scales. For the more severe and homogeneous water repellent areas following forest wildfires, overland flow was enhanced downslope, increasing fast superficial water fluxes at wider scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call