Abstract
In order to research the transport characteristic of photoelectrons in different-structure transmission-mode GaAs photocathodes, the energy and emergence angle spreads of photoelectrons reaching the band-bending region are calculated and the photoemission properties are analyzed. Based on the established atomic configuration models and ionized impurity scattering formulas of the uniform-doping and exponential-doping photocathodes, the trajectories of photoelectrons in different GaAs photocathodes have been calculated. The results show that, the emergence angle spread of the exponential-doping photocathode is more centralized than that of the uniform-doping one. The influence of the built-in electric field on the photoemission is obvious in the short-wave region. The built-in electric field not only increases the quantum efficient, but also improves the resolution of photocathode. This research can be propitious to investigate the photoemission mechanism, and to analyze the effect of the excited photoelectrons on the image intensifier performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.